-
3μV噪聲極限!正弦波發(fā)生器電源噪聲凈化的七階降噪術
當10MHz正弦波的電源抑制比(PSRR)下降20dB,輸出信號總諧波失真(THD)將惡化10倍!高頻開關電源的百mV級紋波、LDO基準源的μV級噪聲,甚至PCB地彈效應,都可能在輸出頻譜上產(chǎn)生-60dBc的雜散。本文揭示三類電源噪聲(低頻紋波/高頻開關/地回路干擾)的耦合路徑,并提供從芯片級到系統(tǒng)級的七重凈化方案,助您將電源噪聲壓至<3μV RMS。
2025-06-30
-
一文讀懂SiC Combo JFET技術
安森美具有卓越 RDS(on)*A 性能的 SiC JFET,特別適用于需要大電流處理能力和較低開關速度的應用,如固態(tài)斷路器和大電流開關系統(tǒng)。得益于碳化硅(SiC)優(yōu)異的材料特性和 JFET 的高效結構,可實現(xiàn)更低的導通電阻和更佳的熱性能,非常適合需要多個器件并聯(lián)以高效管理大電流負載的應用場景。
2025-06-26
-
μV級精度保衛(wèi)戰(zhàn):信號鏈電源噪聲抑制架構全解,拒絕LSB丟失!
在精密測量、醫(yī)療儀器及工業(yè)傳感系統(tǒng)中,信號鏈的μV級精度直接決定系統(tǒng)性能上限。而電源噪聲,常以隱形殺手的姿態(tài)吞噬ADC/DAC的有效位數(shù)——當1mV電源紋波可導致12位ADC丟失4個LSB時,電源架構選型便成為精度保衛(wèi)戰(zhàn)的核心戰(zhàn)場。本文從噪聲頻譜與拓撲本質出發(fā),拆解LDO、開關電源及混合架構的噪聲基因,并通過多場景實測數(shù)據(jù),揭示高精度信號鏈的電源設計法則。
2025-06-19
-
如何解決在開關模式電源中使用氮化鎵技術時面臨的挑戰(zhàn)?
在開關模式電源(SMPS)中使用氮化鎵(GaN)技術時,盡管其在高功率密度、高頻開關和低功耗方面具有顯著優(yōu)勢,但也面臨一系列技術挑戰(zhàn)。
2025-06-10
-
不同拓撲結構中使用氮化鎵技術時面臨的挑戰(zhàn)有何差異?
氮化鎵(GaN)器件因其高開關頻率、低導通損耗的特性,正在快速滲透消費電子、汽車電驅和數(shù)據(jù)中心等領域。然而,不同拓撲結構對GaN器件的需求呈現(xiàn)顯著差異:例如快充領域的LLC諧振拓撲需要高頻率下的電磁干擾控制,而車載雙向逆變器更關注動態(tài)電阻與耐壓性能。本文將深入分析半橋拓撲、雙向逆變拓撲、多電平拓撲及汽車主驅模塊中的氮化鎵技術痛點,揭示材料特性與系統(tǒng)設計間的矛盾性關系。
2025-06-10
-
集成化柵極驅動IC對多電平拓撲電壓均衡的破解路徑
在新能源汽車主驅模塊(如800V平臺)中,多電平拓撲通過串聯(lián)開關器件實現(xiàn)高壓階梯化處理,但分立式驅動方案面臨兩大核心挑戰(zhàn)。
2025-06-10
-
多通道同步驅動技術中的死區(qū)時間納米級調控是如何具體實現(xiàn)的?
在電力電子系統(tǒng)中,多通道同步驅動的死區(qū)時間直接影響系統(tǒng)效率和安全性。傳統(tǒng)方案常面臨時序誤差累積(±10ns以上)、開關損耗高(占系統(tǒng)總損耗15%-25%)和模式切換不靈活等痛點。納米級死區(qū)調控技術通過硬件架構革新與智能算法協(xié)同,將控制精度提升至亞納秒級,為新能源汽車、高頻電源等場景提供關鍵技術支撐。本文將深入解析其實現(xiàn)路徑與產(chǎn)業(yè)突破方向。
2025-06-10
-
高頻時代的電源革命:GaN技術如何顛覆傳統(tǒng)開關電源架構?
在電力電子系統(tǒng)對能效和功率密度要求日益嚴苛的背景下,氮化鎵(GaN)技術已成為推動開關模式電源(SMPS)發(fā)展的核心動力。相較于傳統(tǒng)硅基器件,GaN憑借其3.4eV的寬禁帶特性、更高的電子遷移率(990-2000 cm2/V·s)及更低的導通電阻(RDS(ON)),可將開關頻率提升至兆赫級,同時減少30%以上的能量損耗。然而,其實際應用中仍面臨驅動設計、熱管理、電磁兼容性等挑戰(zhàn)。以半橋降壓轉換器為例,GaN開關的柵極電壓耐受值更低(通常<6V),且快速切換(dV/dt達100V/ns)易引發(fā)寄生振蕩和電磁干擾(EMI),這對電路布局和驅動控制提出了更高要求。
2025-06-09
-
車輛區(qū)域控制架構關鍵技術——趨勢篇
向軟件定義汽車 (SDV) 的轉型促使汽車制造商不斷創(chuàng)新,在區(qū)域控制器中集成受保護的半導體開關。電子保險絲和 SmartFET 可為負載、傳感器和執(zhí)行器提供保護,從而提高功能安全性,更好地應對功能故障情況。不同于傳統(tǒng)的域架構,區(qū)域控制架構采用集中控制和計算的方式,將分散在各個 ECU 上的軟件統(tǒng)一交由強大的中央計算機處理,從而為下游的電子控制和配電提供了更高的靈活性。
2025-06-04
-
如何通過 LLC 串聯(lián)諧振轉換器優(yōu)化LLC-SRC設計?
十幾年來,電源行業(yè)廣泛采用了圖 1 中所示的電感器-電感器-電容器 (LLC) 串聯(lián)諧振轉換器 (LLC-SRC) 作為低成本、高效率的隔離式功率級,其中包含兩個諧振電感器(兩個“L”:Lm 和 Lr)和一個諧振電容器(一個“C”:Cr)。LLC-SRC 器件具有軟開關特性,沒有復雜的控制方案。得益于軟開關特性,該器件支持使用額定電壓較低的元件,并可提高效率。該器件采用簡單的控制方案,即具有 50% 固定占空比的變頻調制方案,與相移全橋轉換器等用于其他軟開關拓撲的控制器相比,所需的控制器成本更低。
2025-05-21
-
工程師必看!從驅動到熱管理:MOSFET選型與應用實戰(zhàn)手冊
MOSFET因其獨特的性能優(yōu)勢,已成為模擬電路與數(shù)字電路中不可或缺的元件,廣泛應用于消費電子、工業(yè)設備、智能手機及便攜式數(shù)碼產(chǎn)品中。其核心優(yōu)勢體現(xiàn)在三個方面:驅動電路設計簡化,所需驅動電流遠低于BJT,可直接由CMOS或集電極開路TTL電路驅動;開關速度優(yōu)異,無電荷存儲效應,支持高速工作;熱穩(wěn)定性強,無二次擊穿風險,高溫環(huán)境下性能表現(xiàn)更穩(wěn)定。這些特性使MOSFET在需要高可靠性、高效率的場景中表現(xiàn)尤為突出。
2025-05-15
-
功率器件新突破!氮化鎵實現(xiàn)單片集成雙向開關
氮化鎵(GaN)單片雙向開關正重新定義功率器件的電流控制范式。 傳統(tǒng)功率器件(如MOSFET或IGBT)僅支持單向主動導通,反向電流需依賴體二極管或外接抗并聯(lián)二極管實現(xiàn)第三象限傳導。這種被動式反向導通不僅缺乏門極控制能力,更因二極管壓降導致效率損失。為實現(xiàn)雙向可控傳導,工程師常采用背對背(B2B)拓撲級聯(lián)兩個器件,卻因此犧牲了功率密度并增加了系統(tǒng)復雜度。
2025-05-11
- 亦真科技XR奇遇!2025西部電博會開啟VR密室/恐怖解密探險之旅
- 攻克28G PAM4抖動難題!差分輸出VCXO如何重塑光通信時鐘架構
- 低至0.0003%失真!現(xiàn)代正弦波發(fā)生器如何突破純度極限
- 蓉城再掀技術革命!第三十屆國際電子測試測量大會聚焦射頻前沿
- 9.9元搶500元超值觀展禮包!深圳智能工業(yè)展早鳥福利限時開搶
- 3μV噪聲極限!正弦波發(fā)生器電源噪聲凈化的七階降噪術
- 選對扼流圈,EMC不再難!關鍵參數(shù)深度解析
- 中國半導體行業(yè)高質量發(fā)展創(chuàng)新成果榜單發(fā)布
- 第八屆中國 IC 獨角獸榜單發(fā)布
- 選對扼流圈,EMC不再難!關鍵參數(shù)深度解析
- 3μV噪聲極限!正弦波發(fā)生器電源噪聲凈化的七階降噪術
- 蓉城再掀技術革命!第三十屆國際電子測試測量大會聚焦射頻前沿
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall